Horizontal and Straight Triangulation on Heisenberg Groups

نویسندگان

چکیده

Abstract This paper aims to show that there exists a triangulation of the Heisenberg group $$\mathbb {H}^n$$ H n into singular simplexes with regularity properties on both low-dimensional and high-dimensional layers. For low dimensions, we request our be horizontal while, for high define notion straight using exponential logarithmic maps, require have A such is first constructed general polyhedral structure then extended whole group. In this paper, also provide some explicit examples grid triangulations.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Heisenberg Idempotents on Unipotent Groups

Let G be a possibly disconnected algebraic group over an algebraically closed field k of characteristic p > 0, such that its neutral connected component, H = G0, is a unipotent group. We recall that an algebraic group over k is defined to be a smooth group scheme of finite type over k. Let us fix a prime number l 6= p. If X is a k-scheme, we use D(X) to denote the bounded derived category of Ql...

متن کامل

Heisenberg Groups and Algebraic Topology

We study the Madsen-Tillmann spectrum CP∞ −1 as a quotient of the Mahowald pro-object CP∞ −∞ , which is closely related to the Tate cohomology of circle actions. That theory has an associated symplectic structure, whose symmetries define the Virasoro operations on the cohomology of moduli space constructed by Kontsevich and Witten.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Geometric Analysis

سال: 2023

ISSN: ['1559-002X', '1050-6926']

DOI: https://doi.org/10.1007/s12220-023-01316-8